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WIND TUNNEL MEASURFMENTS OF THE MAGNUS INDUCED SURFACE PRESSURES ON A
SPINNING ARTILLERY PROJECTILE MODEL IN THE TRANSONIC SPEED REGIME

1. INTRODUCTION

A spinning projectile in flight produces aerodynamic surface pressures
that have led to the so-called Magnus effect. This external aerodynamic phenomenon
due to the combination of projectile spin and angle of attack produces forces
and associated moments that have resulted in flight insta')ilities for several
military projectiles. 1 - 3 Although the Magnus force is only a 10th to a 100th of
the normal force, it can have a large detrimental influence on range and accuracy.
Figure 1 contains flight test data illustrating the yaw growth experienced by an
artillery projectile experiencing a Magnus instability. A concerted effort has
been underway to experimentally investigate the fundamental Magnus phenomena and
to develop theoretical models and analytical techniques to describe the effect. 4 ,5

This report presents wind-tunnel test measurements of the aerodynamic
surface pressures on a full scale spinning model of the M549/XM785 artillery
projectile in the transonic speed regime. The model, a secant ogive, cylinder,
boattail configuration with an 8-inch diameter and a 5.5 caliber length, was
evaluated both with and without a rotating band. The model was tested in the
NASA-Ames 14 Foot Transonic Wind Tunnel. Circumferential pressure distributions
were obtained at several longitudinal locations on the model, with emphasis on
the cylindrical and boattail sections. The model was tested at angles of attack
of 0, 4, and 10 degrees and spin rates of 0 and 4,900 rpm. All testing was done
at a Mach number of 0.94, which corresponds to the critical Mach number for this
projectile configuration.

The model configuration, scale, and test conditions were selected to
complement a series of wind-tunnel tests conducted by the Ballistics Research
Laboratory (BRL) that involved an extensive wind-tunnel investigation of a
similar projectile configuration and scale at the NASA-Langley 8-Foot Transonic
Wind Tunnel. 6 , 7 During these tests, the aerodynamic forces and moments as well
as velocity profiles of the boundary layer were obtained on both a spinning and
non-spinning model. The aerodynamic surface pressures were also measured, but
only for the non-spinning condition.

The tests were conducted to extend the data base for this projectile
configuration and represent the first time that the aerodynamic surface pressures
have been experimentally determined on any spinning projectile. Several other
test objectives were also achieved as shown in Figure 2. The results allow a
detailed insight into the Magnus phenomena as well as providing experimental
data to support the evolution and validation of theoretical and nurmierical analyses.
In addition, the test demonstrated the use of a new experimental method to obtain
surface pressure data.

9
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N Mach number 0.94 represents the critical Mach number for this projectiler (i.e., the condition where the projectile possesses the maximum destabilizing

aerodynamic effects). Figure 3 depicts the flow field that exists over the
projectile at this transonic condition. The shadowgraph shows that two separate
shock waves occur: onE just downstream of the ogive/cylinder junction and the
other just downstream of the cylinder/boattail junction. This combination of
subsonic and supersonic flow produce a complex surface pressure distribution as
shown.

In addition to the basic angle of attack of 0 degree, the test included
angles of attack of 4 and 10 degrees because they produce an attached flow and
separated flow, respectively, over the boattail region of the model. The aero-
dynamic characteristics undergo a significant change between these two angles
of attack, and the resulting pressure data would be of great interest. The
spin rate of 4,900 rpm represents a tip speed ratio of .17 corresponding to a
Mach 0.94 muzzle velocity condition. Finally, the influence of the rotating
band on the Magnu:. surface pressures in the transonic speed region is of par-
ticular concern. This situation is currently being addressed by using computa-
tional fluid dynamic methods, and little experimental data exists to support or
"verify these theoretical analyses. 8 ,9

2. BACKGROUND

During the past several years, the Aerodynamics Research and Concepts
Assistance Branch has systematically evolved a new and unique method to experi-
mentally measure the aerodynamic pressures acting over the external surface of
the spinning wind tunnel model. The method is based on an unconventional model
design and instrumentation arrangement. The model is composed of two parts. A
non-spinning inner portion of the wind tunnel model, containing the instrumenta-
tion, detects the surfdae pressure through a series of vent holes in the spinning
outer portion of the model, the pressure being retained for measurement by means
of a sliding seal arrangement. 10 This method avoids the problems and limitations
of conventional test techniques 11 ,12 and allows surface pressures to be measured
on spinning bodies at any attitude and flow regime. In addition, the body can
include indentations or protuberances.

The validity and performance capability of the testing method has been
demonstrated in stages, beginning with a simple spinning right-circular cylinder
in cross flow that verified the basic concept. 13 A second major series of tests
involved the measurement of the surface pressures on a spinning Magnus autorotor,1 '
which extended the testing method to bodies having irregular surface features and
an unbteady, periodic flow field. Other studies investigated improved instrumenta.
tion elements, in particular, the critical sliding seal units. This latter work
evolved a magnetic fluid seal 15 (to reduce friction effects), a miniature sized
seal, and a remotely selectable pneumatic seal, all intended to increase the
versatility and accuracy of the testing method. These efforts were funded by the
BRL, CRDEC, and Sandia National Laboratories, respectively. Portions of the
material presented in this report have been disseminated through presentations at

A. conferences 16 and articles in technical journals. 1 7  A concise summary of the
evolution of the experimental technique and the results obtained has also been

Rza ;published. 18
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3. MODEL DESCRIPTION

The external model configuration and model sting arrangement are
shown in Figures 4 and 5, respectively. The model was composed of a 3 caliber
secant ogive, a 2 caliber cylindrical section, and a 7-degree, 0.5-caliber
boattail. The projectile represents a 130-percent scale model of the M549/XM785
155-mm artillery projectile; however, it closely resembles the baseline projectile
shape being analyzed by the BRL. The model also included the flat nose and wrench
grooves of a standard fuze. The model's external shaping and scale were also
identical to the model used in the Langley tests. The aft end of the model sting
was attached directly to the wind tunnel roll head assembly which, in turn, was
attached to the tunnel angle-of-attack sector sting.

A schematic drawing of the model's internal arrangement is shown in
Figure 6. Detailed engineering drawings of the model components are included for
your convenience in the last appendix in this report (Appendix D). The model
consisted of an aluminum core containing the spin motor, pressure taps, and
scanivalve mechanism. The model core was stationary (i.e., non-spinning) with
respect to the model sting. The steel shell, representing the outer contour of
the projectile was attached to the core by means of front and rear bearings and
connected to the spin motor through an axial drive shaft at the nose. A set of
four vent holes at 90-degree circumferential intervals w9re located through the
shell at each of 20 longitudinal stations along the model. These vent holes which
were 0.0625 inch in diameter coincided with the 20 pressure taps contained in the
outer surface of the core section. Only two taps are shown in Figure 6 for clarity.

Two scanivalves, located in the core, were used as switching devices
to allow the remote selection and engagement of the pressure tap seal units.

The scanivalves were simultaneously driven by a common index/drive unit, also
located in the model core. One scanivalve directed pneumatic air to a particular
"pressure tap seal unit to force it outward against the inner surface of the
spinning shell. Concurrently, the other scanivalve directed the surface pressure
being measured at that tap out through the sting to the pressure transducer and
associated recording equipment located outside the tunnel. Figures 7 and 8 con-
tain photographs of the model core with the shell removed to illustrate the
scanivalve installation and the pressure tap locations, respectively.

The gap between the face of the pressure tap seal unit and the inner
surface of the shell was sealed by means of a circular o-ring located on the
outer face o' the seal unit. The cavity created by engaging the seal unit with
the shell was open to the pressure acting on the outside surface of the shell
when the vent hole was aligned with the seal unit, as illustrated in Figure 9.
Once the vent hole in the spinning shell rotated past this aligned position,
the o-ring caused the cavity to retain the pressure. After a sufficient number
of shell revolutions, the cavity eventually assumed a constant pressure equal
to the pressure acting on the surface of the spinning shell at that particular
circumferential location. Details of the pressure tap seal units are contained
in Figure 10, and a photograph of them is shown in Figure 11. Figure 12 depicts
the seal units installed in the boattail section of the core. The outer surface
of each seal unit was contoured to match the radius of the inner shell surface
at that location. The Parker-Hannifan No. 2-204-N827-80 o-rings, 0.5 inch
diameter, were composed of lubricant-impregnated carboxylated nitrile rubber and
were retained in the circular groove of the seal block by high viscosity silicone

14
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oil. Pressure measurements at various points on the surface of the spinning
body were obtained by positioning the core and the attached tap to different
roll attitudes relative to the angle-of-attack plane. This was accomplished by
means of a remotely settable roll hedd located between the model sting and the
tunnel angle-of-attack sector sting. The roll head allowed the model core to be
sequentially set to various roll orientations.

"The steel shell was made up of two basic parts. The forward part in-
cluded the ogive and most of the cylindrical section. The aft part included the
boattail and the portion of the cylindrical section in the area of the rotating
band. The model could he tested with or without the rotating band by simply
changing the aft part of the shell. Figure 13 shows the aft shell section that
included the rotating band. The rotating band, which represented a post-fired
condition, was machined directly into the aft shell section. Vent holes were
also located on the rotating band lands and grooves, allowing measurements at
these positions. The model included an enclosed base similar to the actual
projectile.

The longitudinal locations of the pressure taps for the 20 vent holes
are defined in Figure 14. The tap locations were selected to match those used
in the non-spinning surface pressure model used in the Langley tests. Some taps
were offset 30 degrees to the main line of taps to allow closer longitudinal
spacing than could ba achieved with the seal units in a single line. The taps
were concentrated over the c,,lindrical and boattail portion of the mcdel becadse
the Magnus effect primarily occurs in this area. Also, the flow over thrl ogive
and the resultant small Magius effect can be analyzed quite accuratcly by
current theoretical means. One tap was located to measure the surface pressure
on the base of the model at a radial lucation .09 calibers in from the edge of
the boattail. Detailed drawings of the model and sting componprts are included
in Appendix P.,

All operation and instrumentation wiring and tubing were r,'uted from
the model to a special console located outside the tuic:,i tp.;t section through
a hole .875 inch in diameter located down the length of t., riodel sting. This
hole contained the operating wires, thermocouple wires, and the cooling water
tubing for the motor, the scanivalve operating wires, the engagement pneumatic
pressure tubing and signal pressure tubing for the taps, and the thermocouple
wires for the model bearings. The instrumentation and operating interfaces are
detailed in Figure 15. The water-cooled, variable frequency/variable voltage
electric motor was rated at 5 hp for the nominal 5,000 rpm model spin rate.
This condition was easily achieved with 150 V/150 cps obtained from the tunnel
generator system. The motor operated at about 10 amps and the motor temperature
never exceeded 100 OF even after sustained operation of Jp to 8 hours. Model
spin was smooth and, once established, never varied more than 50 rpm from the
nominal 4,900 rpm. Engagement of a pressure tab seal unit reduced the spin
rate about 100 rpm. Model bearing temperatures never exceeded 100 OF even
under sustained spinning for several hours with the tunnel operating at a
stagnation temperature of 130 OF. The model had no perceivable pitch or yaw
motion during the test and possessed no vibration under all conditions of spin
and angles of attack. During this test, the model was spun at 5,000 rpm for a

i• total of 55 hours. Even after these 16,500,000 revolutions, the model bearings
appeared to be as good as new. A photograph of the model installed in the wind
tunnel test section is shown in Figure 16. The model core weighed 100 pounds,
the model shell, 65 pounds, and the model sting, 85 pounds.
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The special console, shown in Figure 17, was located in the tunnel
control room and contained the single differential pressure transducer used to
measure the surface pressure of the model with respect io the test section's free
stream static pressure. The strip chart recorder continuously displayed the
output of the pressure transducer as a function of time, thereby allowing the
quality of the data to be assessed as testing proceeded. The console included
the capability to remotely zero and calibrate the transaucer while the tunnel
was operating. Pressure tap selection, engagement, and disengagement were
accomplished by controls located in the console. The model rotational speed
and critical model bearing temperatures were also monitored with instrumentation
located on the control console. Changes in the angle of attack, roll head move-
ment, and model spin motor operations were controlled by wind tunnel personnel.
Calibration of the roll angle of the model core was done by machining an indexed
flat surface on the model sting. This surface was aligned with the primary row
of model pressure taps as the zero degree reference. A clinometer placed on the
flat allowed model roll alignment to within 1 minute of arc.

4. TEST PROCEDURE

The wind tunnel test program is summarized in Figure 18. All testing
was done at a Mach number of 0.94. The model was tested at angles of attack of
0, 4, and 10 degrees for model spin rates of 0 and 4,900 rpm. Because of the
constant circumferential pressure distribution for the runs at 0 degree angle of
attack, pressures were measured at 45-degree increments of roll, resulting in
eight readings per longitudinal location. For the runs at 4 and 10 degrees
angle of attack, pressures were measured every 10 degrees of roll, resulting in
36 readings per longitudinal location. Due to time constraints, data for the
model with the rotating band were only taken at 0 and 10 degree angles of attack.
Also, only the 12 rear most taps were used for the rotating band case because
the presence of the band did not affect the forward pressures.

The test procedure was to establish the tunnel air flow at the test
Mach number for a given model configuration and angle-of-attack condition. The
model was spun up to the desired test spin rate. A single pressure tap seal
unit was then remotely engaged by means of the scanivalve selector, which directed
high-pressure air to the tap location. A pneumatic pressure of about 5 psi was
sufficient to force the designated tap o-ring out against the inner surface of
the model shell to provide the sliding seal function. The engaged pressure tap
was then able to detect the surface pressure at that location. When the pressure
was visually determined to be constant from the strip chart recorder, the wind
tunnel data acquisition system recorded the value, reduced it to coefficient
form, and printed it out along with the tunnel conditions at that time. The
model core was then rotated to the next circumferential position by means of
the remotely controlled roll head arid the procedure repeated until a complete
circumferential circuit was completed. Figure 19 presents a portion of the strip
chart record. About 60 to 90 seconds were required for the measured pressure
to reach its constant equilibrium value. This pressure was directed through
the second scanivalve and down the model support sting via plastic tubing to
the pressure transducer located in the data recording console. At the completion
of a circumferential circuit, the tap was disengaged and the next tap engaged.
Engagement and disengagement of seals could be accomplished remotely while the
model was spinning and the tunnel operating.
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The relatively long time required for the pressure to become constant
was due to the 150-foot length of tubing between the model and the transducer.
This resulted in seal engagement times of about 40 minutes to complete a circum-
ferential survey at a particular longitudinal location. Over 12 hours were
needed to test a single model configuration. Locating the transducer in
the control room had several advantages, such as ease of calibration, absence of
temperature effects, and the provision of pressure pulse damping volume. With
the test method validated, in future use of this technique, the transducer could
be located in the model or in the sector sting with a marked reduction in tube
length, pressure lag time, and consequent data acquisition time.

After each spinning test, the shell was removed and the o-rings changed.
In most cases, the o-rings showed little or no wear. In fact, one seal was
engaged for over 75 minutes without experiencing any detectable wear. However,
certain tap locations did produce severe o-ring wear, as noted in Table 1. For
the non-spinning tests, the model shell was simply lIcked to the core by a set

p,• screw with the vent holes aligned with their respective taps. This allowed the
shell and core to be rotated together by the roll head. Certain operational
difficulties were encountered during the initial portion of the test. When
fully retracted, the seal blocks would cover the pneumatic port, reducing the
effective base area over which the engaging air pressure could act. Also, in
the retracted position, the clearance between the seal block and the inside
diameter of the shell was great enough to occasionally allow an o-ring to escape
from its groove in the seal block. Both problems were effectively eliminated by
placing a wire ring with a 0.30-inch diameter beneath the seal block. This
prevented the base of the seal block from covering the pneumatic pressure port
and reduced the clearance between the shell and seal so that the o-ring could
not be dislodged from its groove in the seal block. it was found that 600,000
CS silicone fluid could be used to help retain the o-rings in their grooves.
Following an o-ring change, each seal was sequentially engaged and the shell
manually rotated back and forth to mate the contour of the seal with the
internal contour of the shell to ensure seal engagement and alignment with
the inside surface of the shell. The seals were then retracted prior to
starting of the test run.

5. ANALYSIS OF RESULTS

5.1 General.

The surface pressure data were reduced to coefficient form as defined

in Figure 20. All of the wind tunnel data are tabulated in Appendix A, which
lists the pressure coefficient measured at each circumferential and longitudinal
location for a particular test run. The data are also provided in plotted form
in Appendix B. The differential pressures measured and the associated pressure

__n coefficients are plotted as a function of circumferential angle for each longi-
tudinal tap location. Each set of data is presented for a specific model
configuration for both the spinning and non-spinning cases. These data are
available for use in evolving or validdting theoretical or computational fluid
dynamic analyses of the Magnus effect.

The following sections include examples of specific effects and
observed phenomena obtained during this test.
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5.2 Surface Pressure Distribution.

Figure 21 shows the pressure measured along the projectile for an
angle of attack of 0 degrees for both the spinning and non-spinning cases.
Note that spin produces slightly reduced pressures at most locations. These
data illustrate the ability of the testing method to accurately measure even
these small pressure effects. During the test, pressure differences of .025
psi could be determined. The non-spinning data in Figure 21 show excellent
agreement with the previous NASA-Langley test data.

Figure 22 contains circumferential surface pressure data at a point
on the boattail under spinning conditions. The model was spun in a counter-
clockwise iirection (pilot's view) in order to provide a tightening effect on
the right-hand threaded shell components. This negative spin resulted in a
positive Magrius force as defined in Figure 16. Data are shown for two separate
tests and illustrate the excellent repeatability obtained, even for the severe
pressure variations present.

Figure 23 shows similar pressure data measured on another boattail
location for the model spinning in opposite directions. These data illustrate
that no asymmetric bias was present with the model or instrumentation. The
Magnus effect is clearly illustrated in Figure 24, which shows the difference in
the circumferential pressure distribution due to spin. A net negative pressure
difference is produced on the retreating side of the projectile and a positive
pressure difference on the advancing side, resulting in an additive effect to
the Magnus force. These data indicate that spin produces both a circumferential
shift as well as a distortion of the non-spinning pressure distribution.

The effect of angle of attack on the circumferential surface pressure
distribution at a point on -he boattail under spinning conditions is shown in
Figure 25. Note that the pressure asymmetry that produces the Magnus force is
most pronounced at the largest angle of attack. The resultant local force in the
angle-of-attack plane denoted by CNi (computed by integrating the circumferential

pressure distribution) does not change with angle of attack for this location.
However, the resultant force normal to the angle-of-attack plane Cyi (i.e., the

Magnus force) increases nonlinearly with angle of attack. These data also
illustrate the presence of a negative pressure "hump" on the advancing side of
the leeward point of the projectile (p = 140 degrees). This effect is present at
all longitudinal locations for the spinning projectile at an angle of attack of
10 degrees, as illustrated in Figure 26, but does not occur at an angle of attack
of 4 degrees. This hump may be due to the presence of an attached vortex on
the leeward side of the projectile at the larger angle of attack.

5.3 Force and Moment Distribution.

The circumferential pressure distributions were integrated to determineti the resultant normal force (in the angle-of-attack plane) and side force (normal
to the angle-of-attack plane) at each longitudinal tap location. These local forces
are presented in coefficient form as CNi and Cyi, respectively as defined in

Figure 20. These coefficients indicate the detailed influence of the Magnus effect
at various longitudinal positions on the projectile.
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The resulting normal and side force distributions are shown in
Figures 27 through 29 for angles of attack of 0, 4, and 10 degrees, respectively.
As expected, the Magnus-induced side f:rce is significantly less than the normal
force. Figure 30 shows the side force at an enlarged scale, indicating that the
largest Magnus effect occurs over the boattail.

Although a net positive Magnus force results for both the 4 and 10
degree angles of attack, there are longitudinal regions on the projectile where
the local Magnus force acts in a negative sense. For the 10-degree case, this
situation only occurs in the vicinity of the shock waves; whereas for the 4-degree
case, it is also present on the cylindrical section dnd at the aft portion of
the boattail. Note that the greatest Magnus side force occurs on the cylindrical
portion of the projectile for the 4-degree case and on the boattail for the 10-degri

-W• case. A particularly large Magnus side force is present on the boattail at a
10-degree angle of attack. This large Magnus force, in combination with the large
moment arm between the boattail and projectile center of gravity, results in a
significant Magnus yawing moment.

By integrating the local force coeffitients in a longitudinal sense,
the normal force and side (i.e., Magnus) force coefficients can be determined for
each component (i.e., ogive, cylinder, and boattail), as well as for the total
projectile. In a similar fashion, pitching moments and yawing (i.e., M•-:o')
moments can also be computed, as well as their respective centers of pressure.
The moment terms are referred to a reference point representing the nominal center
of gravity of the actual projectile located .625 calibers from the nose.

These terms are summarized in Appendix C and include the coefficient
derivatives for force and moment with respect to angle of attack and nondimensional
spin rates. The detailed derivations of the local normal and Magnus side force
and their centers of pressure are also contained in Appendix C. The use of these
derivatives both facilitate interpretation of the data and allow comparison with
results from other studies. The relative contributions of the various projectile
components to the Magnus force and moment terms depicted in Figure 30 are summarize

MM in Table 2. These quantitative values further demonstrate the importance of the
boattail in producing the Magnus effect.

The influence of spin on the normal force distribution for angles of
attack of 0, 4, and 10 degrees is indicated in Figures 31 through 33. At both
angles of attack, the presence of spin decreases the negative normal force acting
on the forward portion of the cylindrical section of the projectile and decreases
the positive normal force acting over the aft portion of the cylindrical section,
which should result in a larger positive force and pitching moment for the spinning
case.

The effect of angle of attack on the normal force and moment terms
are contained in Table 3 for the non-Fpinning uase and in Table 4 for the spinning
case. Tables 5 and 6 show the effect of spin on the normal force and moment
terms for angles of attack of 4 and 10 degrees, respectively.
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5.4 Rotating Band Effect.

Details of the rotating band configuration used with the model are
contained in Appendix D. Figure 34 compares the longitudinal surface pressure
distribution over the non-spinning model at zero angle of attack, both with and
without the rotating band. The presence of the rotating band creates larger
negative surface pressures in the area of the band and has the effect of moving
the low pressure expansion region over the boattail slightly forward. The
effect of spin on the pressure distribution over the spinning model with the
rotating band at zero angle of attack is illustrated in Figure 35. Spin has
the main effect of evening out the pressures on the lands and in the grooves of
the rotating band which could be important to theoretical and numerical analyses.
The influence of the rotating band on the side force distribution of the spinning
model at an angle of attack of 10 degrees is presented in Figure 36. As can be
seen, the presence of the rotating band results in significantly larger local
Magnus forces in the band area compared to the no band case. On the boattail,
the effect of the rotating band reduces the peak local Magnus force, as well as
the area over which it acts, relative to the no rotating band condition. The
relatively large effects of the baad on the cylinder and boattail are essentially
self-compensating and result in very little difference in the total Magnus
force and moment coefficients between the rotating band on and off cases, as
shown in Table 7.

The normal force distribution due to spin for the projectile with
"rotating band at a 10 degree angle of attack is shown in Figure 37. The
effect of the rotating band on the normal force and moment terms is contained
in Table 8. For the projectile having the rotating band, the influence of spin
is to reduce the local normal force uver both the cylinder and the boattail
compared to the non-spinning case. The net result is that the spinning pro-
jectile possesses a greatly reduced normal force and a slightly lower pitching
moment than when not spinning.

5.5 Base Pressure.

Data obtained from pressure tap 20, located on the rear facing surface
of the projectile model base, are summarized in Figure 38. At an angle of attack
of 0 degrees, the base pressure is very small, and, in fact, is positive for the
spinning case. The pressure becomes more negative with increasing angle of attack.
No definite trerd is evident with spin and angle of attack.

5.6 Comparison of Surface Pressure Test Results With Other Data Sources.

The data from the surface pressure wind tunnel test can be compared with
data from other experimental and theoretical sources in order to validate and
assess the results. First, the non-spinning pressure distribution from this test
can be directly compared with similar data obtained on a model configuration and
size in the Langley 16-Foot Transonic Wind Tunnel. 7  Because of the non-spinningcondition, only the normal force and moment terms are available and are shown for
angles of attack of 4 and 10 degrees in Tables 9 and 10, respectively. Although
both projectile models had ide,. ical ogive and cylindrical sections, the Langley
test model included a 1-caliber boattail; whereas the Ames test model we used had
a 0.5-caliber boattail. This difference is evident in the force and moment terms
for the boattail and the subsequently larger coefficient derivative for the unstable
pitching moment of the larger boattail.
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An internal balance was employed to directly measure the force and
moment acting on a spinning projectile model. 2 Using this method, only the
total force and moment coefficients could be determined. These directly measured
terms are compared in Tables 11 and 12 with the same terms obtained by integrating
the results of the surface pressure tests. The comparison is excellent, especially
for the 10 degree angle-of-attack case where the model configurations both include
rotating bands and are most similar.

One of the primary objectives of this test was to obtain experimental
data that could be used to evaluate and evolve the Computational Fluid Dynamic
(CFD) codes being developed to predict the flow field and resulting aerodynamic
effects on spinning projectiles. A CFD code currently under development was
used to calculate the aerodynamic terms for a projectile configuration and flight
condition identical to that used in the wind tunnel test. The code is based on
the solution to the thin-layer Navier-Stokes equations, as described by Nietubicz
et al., 8 and was run on a CRAY I computer. Table 13 compares the normal force
fter-mfrom the code with that from the surface pressure wind tunnel test and
illustrates the excellent agreement achieved. The Magnus terms are compared
in Table 14. In this case, the code under predicts the Magnus force by a signi-
ficant amount.

6. CONCLUSIONS

e The sliding seal technique is capable of accurately measuring
the Magnus-induced surface pressures on a spinning projectile wind
tunnel model at transonic Mach numbers.

* Check runs showed excellent repeatability and demonstrated the
absence of model or instrumentation asymmetries.

* Surface pressure data obtained in this test showed good agreement
with the surface pressure data obtained on an identical, non-spinning
model at the NASA-Langley 8-Foot Transonic Wind Tunnel.

* Total coefficients for Magnus force and moment computed by integrating
the measured surface pressure data showed good agreement with directly
measured force and moment data obtained from other spinning models.

* The data indicated the quantitative influence of spin and angle of
attack and reveal that, for a given condition, different portions
of the projectile can experience both positive and negative local
Magnus forces.

* Quantitative pressure data were obtained to indicate the relative
contribution of the various projectile elements (i.e., ogive,
cylinder, boattail, rotating band) to the Magnus effect.

SA significant negative pressure region was detected on the advancing
side of the leeward location at all longitudinal stations for a
10-degree angle of attack. This phenomenon was not noted at a
4-degree angle of attack.

* Base pressures at the test Mach number were found to be near free-

stream static values.
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0 The presence of the rotating band influenced the Magnus effects
both upstream and downstream of the band, but in a compensating
manner resulting in very little difference in the total Magnus
effect between the band-off and band-on cases.

* Model components and instrumentation functioned well; however,
pressure settling times of about 60 seconds were experienced.
Future tests should employ shorter lengths of pressure tubingto decrease the data acquisition time.

N
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GLOSSARY

CN normal force coefficient N/qS

CNi local normal force coefficient,

360/At di Azi sinAt costj
j=1 2Cpj d2

CN 9CN/aa

Cm pitching moment coefficient, PM/qsd

Cm

Cn yawing moment coefficient, YM/qsd

Cn p Cnl/a
P

Cp pressure coefficient, (P - P,)/q

Cy side force coefficient

CYi local side force coefficient,

360/At di Azi sinat sintj
1 2 Cp.

j=1 p ird2

Cy p Cy/ a@

d model reference diameter (7.95 inches)

i subscript denotes value at location Zi

j subscript denotes value at location tj

L projectile length (44.616 inches)

M Mach number

N normal force
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P surface pressure

P.. free stream static pressure

PM pitching moment

p spin rate
A

p tip speed ratio, pd/2V

q dynamic pressure, pv2 /2

Rd Reynolds number, v/v
S reference area, •d2/A

SF side force

SIGMA N angle between the projectile center line and
the sun direction

T. free stream temperature

t time

V total free stream velocity

x, y, z body axes

YM yawing moment

Z distance along model measured from nose

zcg longitudinal location of reference center of
gravity from nose

Zcp/L normal force center-of-pressure location from
nose, .625 - .17 82(Cm /CNa)

Zcp/L (Magnus) Magnus force center-of-pressure location from
nose, .625 + .1 782(Cn p/Cy )

a angle of attack

M AP P - PW

increment between circumferential locations

v air kinematic viscosity

ratio of circle circumference to diameter
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Ip air density

+j circumferential location

e angle of projectile surface to projectile
centerline
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APPENDIX A

TABULATED WIND TUNNEL TEST DATA

This appendix presents the measured pressure data in tabulated format
Each set of data relates to a specific model configuration and test condition:
rotating band on or rotating band off, angle of attack of 0, 4, or 10 degrees,
and spinning or non-spinning. The resulting pressure coefficients are presented
as a function of azimuthal location (€) for each longitudinal tap location (Z/L).

Data for the ogive area obtained during the Langley non-spinning test
are also included to provide the total pressure distribution. The appendix figures
contain the following data:

Angle
of Spin

Rotating attack rate Run
Figure band (deg) (rpm) no.

Al OFF 0 0 7-11, 12-25

A2 OFF 0 4900 73-92

A3 OFF 4 0 30-49

A4 OFF 4 4900 98-112

A5 OFF 10 0 113-122, 127-135

A6 OFF 10 4900 50-69

A7 ON 0 0 144-154

A8 ON 0 4900 181-192

A9 ON 10 0 157-168

A1O ON 10 4900 169-180
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APPENDIX B

PLOTTED WIND TUNNEL TEST DATA

This appendix contains the measured pressure data in plotted format.
Each set of plots relates to a specific model configuration and test condition
with data for both the spinning and non-spinning cases presented on each plot.
The appendix figures include the following data:

Angle
of Spin

Rotating attack rate
Figure band (deg) (rpm)

Bl OFF 0 0, 4900

B2 OFF 4 0, 4900

B3 OFF 10 0, 4900

B4 ON 0 0, 4900

B5 ON 10 0, 4900

Because of the computer format, some of the terms in Appendix B are
different from those of the main report text. The following define these
terms:

Symbol used in

Term report text

P-P STATIC AP

C.P. Cp

PHI

w 101
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APPENDIX C

FORCE AND MOMENT TERMS
COMPUTED FROM SURFACE PRESSURE DATA

This appendix contains both local and total force and moment coefficients
and related terms as computed from the measured surfare pressure data. Each set
of data relates to a specific model configuration and test condition as follows:

Angle
of Spin

Rotating attack rate
Figure band (deg) (rpm)

Cl OFF 0 0

C2 OFF 0 4900

C3 OFF 4 0

C4 OFF 4 4900

C5 OFF 10 0

C6 OFF 10 4900

C7 ON 0 0

C8 ON 0 4900

C9 ON 10 0

ClO ON 10 4900

These data indicate the total coefficient values as well as the
contribution to the coefficient values due to the nose, cylinder, and boattail
portions of model where:

Portion Region (Z/L)

nose 0 to .537
cylinder .537 to .910
boattail .910 to 1.00

The terms are listed for the longitudinal location at which they were
computed. Because of the computer format, some of the terms are different from
those in the main report text. The following define these te-ms:
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Symbol used in Definition
Terms report text (if not in report text)

XCG/L Xcg/L

ZI/L Zi/L

ZI Zi

DZI AZi

DIA di Diameter of model at Zi

CNI CN Local normal force coefficient
LOCAL normal to local surface

CN CN. Local normal force coefficient
i normal to longitudinal (Z) axis

C ICNi Summation of local normal force
SUM coefficients from nose

CM CMi Local pitching moment coefficient

CYI Cy Local side (Magnus) force coef-
LOCAL i ficient normal to local surface

CY iCy Summation of local side (Magnus)
SUM force coefficients from nose

Cn Cn Local yawing (Magnus) moment
i coefficient

NORMAL FORCE CN Total normal force coefficient

COEFFICIENT

PITCHING MOMENT CM Total pitching moment

COEFFICIENT Coefficient referred to tip of
(NOSE) nose (Z/L = 0)

PITCHING MOMENT Total pitching moment coefficient
COEFFICIENT referred to Ref C.G. (Z/L = .625)
(CG)

NORMAL FORCE Normal force coefficient due to
COEFFICIENT nose portion of model
(NOSE)

PITCHING MO4ENT Pitching moment coefficient due to
COEFFICIENT nose portion of model referred to
(NOSE) (NOSE) tip of nose (Z/L = 0)

Appendix C 112
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PITCHING MOMENT Pitching moment coefficient due
COEFFICIENT to nose portion of model referred
(CG) (NOSE) to Ref C.G. (Z/L = .625)

NORMAL FORCE Normal force coefficient due to
COEFFICIENT cylindrical portion of model
(CYL)

PITCHING MOMENT Pitching moment coefficient due
COEFFICIENT to cylindrical portion of model
(CYL) (NOSE) referred to tip of nose (Z/L = 0)

PITCHING MOMENT Pitching moment coefficient due
COEFFICIENT to cylindrical portion of model
(CG) (CYL) referred to Ref C.G. (Z/L = .625)

NORMAL FORCE Normal force coefficient due to
COEFFICIENT boattail portion of model
(BT)

PITCHING MOMENT Pitching moment coefficient due
COEFFICIENT to boattail portion of model
(NOSE) (BT) referred to tip of nose (Z/L = 0)

PITCHING MOMENT Pitching moment coefficient due
COEFFICIENT to boattail portion of model
(CG) (BT) referred to Ref C.G. (Z/L = .625)
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The following are derivations ,f selected data reduction terms
included in Appendix C.

1. Derivation of Local Force ar-.I Moment Coefficient:
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CNicosO CNi

AAO diin

AC F;, Cp n

Fj, Cpj Fj COSO

-y

- IAt pressure tap location Zi: APj = Cp. q

Fj = Cp. q Sj

pv
2

jq = .- ,.

2

Sj AC AZi

di
AC - sinAO

2

di
Sj - AZi siný

2

di
Fj= Cpj q - AZi sinAý

A n C2
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360/ A
Ni : Fj cos uj

j=1

36o/, di
Ni I • Cpj q - a-i sin A COS j

j=1 2

N i
CNi = -

S =-

4

S360 /A di AZi sinAý COS~j
CNi j = 2Cpj .12

2 di AZi sinAO 360/AC

CNi = ' rd2  j=1 Cp. CO5oj

similarly:

2 di AZi sinfa 360/A4

Cyi Cp. sinfj
= 1rd2  j=l j

AO 100

3 1 --- 36

27
CN C N C AZi coSOi

"For this report, i 1 ---- 27 includes data from the 19 tap locations used in
the Ames test model, plus data from 8 ogive locations obtained in reference 7.

• ~where :

Zi+l - Zi Zi - Zi_1
AZi = +

2 2
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Zi+1 - Zi-l
AZi = _____

2

@ Z = 27 Zi1  = L

similarly:

27
cy= IC ,* AZi cose

i=1 i

Mi= NiZi

Mi= 'ýAFj Zi cosoj
j=1

M3"OfAoCP q 'i AZi sinAO Zij COS~j

Cm. = -

' qsd

-ffd2

4

2 Cp. di AZi Zi sinAO co0Sj
360/At J

c j=1 ffd3

C =2 di AZi Zi si nAO 360 AO p O~

-ffd3  j=1

similarly:

C 2 di AZ1 Zi sinAO 360 fAO p i~

27
~mI CM. AZi'M n s = 1 1
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27
= Cn AZi.

nose i=1 n
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2. Derivation of Normal Force and Magnus Force Centers of Pressure
Locations:
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z CN

l---AXcp--4 0-.-*- Xcp

Cm
d 7.951N. SREF CG CD

-* -. 375 L -. 625 L

•'• F"L =44.616 IN.

Xcp + AXcp = .625L

Xcp Axcp
- + - = .625
L L

Xcp + AXcp d
- - =.625

L L L

Xcp d AXcp
-- = .625
L L d

Sd CN

a

-- = .625 7.95

L 44.616 CN

Cm
Xcp a

-- .625 - .1782 --

L CN
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*CrWJJWAL~.-.LIAM IrrK~r W-M fXJ VKPL.7 W- -~l3 M..t lUX2SfKL J .x~ Mt ~VAVAfA2 A -VA>!S--- r --

1 = 44.616 IN.

CPMAGNUS ANGLE OF
d=7.95 IN. ATAC PLANE______

REF CG ATC LN

AXCP .625 L

XCPMAGNUS

Cy Y

XcpMAGNS AXCPMGU + .625L

XcpMAGNUS AXcpMGU

+ .625
L L

XcpMAGNUS "CPMGNUS d
_______ _______ - + . 625

L L L

XcpMAGNUS AXcpMGU

=.1782 +.625
L d

AXCPMGU cn

d cy

XCPMAGNUS cn

_______ -. 625 + .1782 -
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APPENDIX D

ENGINEERING DRAWINGS OF WIND
TUNNEL MODEL COMPONENTS

Appendix D contains the engineering drawings of the model and sting

components, including an assembly drawirng.

Figure

D-1 Nose

D-2 Junction Ring

D-3 Forward Bearing Lock Ring

D-4 Aft Bearing Lock Ring

D-5 Drive Shaft

D-6 Armature Adapter Lock Nut

D.7 Motor Drive Adapter

D-8 Motor Lock Screw

D-9 Strut Nut

D-1O Core/Sting Lock Pin

D-11 Forward Ogive

D-12 Tail Section, Version A (Rotating Band Off)

D-13 Forward Core Motor/Bearing Support Section

D-14 Strut

D-15 Aft Core Section

D-16 Spinning Projectile Pressure Model Assembly

D-17 Mid Section

D-18 Tail Section, Version B (Rotating Band On)

D-19 Main Core Section (View 1)

D-20 Main Core Section (View 2)
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